Question Number	Answer	Acceptable answers	Mark
1(a)	 tin {more expensive/costs more} (than aluminium/steel) ORA (1) 	rarer	(2)
	 amount of tin in Earth smaller (than aluminium/steel) ORA (1) 	Turci	

Question Number	Answer	Acceptable answers	Mark
1(b)	C - reduction		(1)

Question Number	Answer	Acceptable answers	Mark
1(c)(i)	an explanation linking the following		(2)
	• a mixture of (1)	reject compound ignore combined/joined	
	• metals (1)	specific examples reject reference to non-metals	
		metals melted together (2)	

Question Number	Answer	Acceptable answers	Mark
1(c)(ii)	 in pure metal /aluminium atoms are all same size (1) in pure metal /aluminium {layers/sheets/atoms} 	ions or particles for atoms reject molecules once only	(3)
	{slide/slip/move} (over one another) easily(1)		
	magnesium atoms larger (1)	different sized particles	
	 disrupt {layers/structure/arrangeme nt} of aluminium atoms (1) 	{lock/hold/jam} layers together	
	prevent {layers/sheets/atoms} {slip/slide/move} (1)		

Question Number	Answer	Acceptable answers	Mark
2 (a)	gold		(1)

Question	Answer	Acceptable answers	Mark
Number			
2 (b)	{loss of / remove} oxygen	gain of electrons	(1)

Question Number	Answer	Acceptable answers	Mark
2 (c)	An explanation linking		
	either		
	 aluminium high(er) in reactivity / aluminium more reactive than carbon / aluminium compounds are very stable (1) 		
	or		
	 iron lower in reactivity / iron less reactive than carbon / iron compounds less stable (1) 		
	plus one of		
	 (for aluminium) electrolysis is powerful means of reduction / needs powerful means of extraction / needs more energy (1) 	stronger means of reduction	
	 (for iron) can be reduced with {carbon / carbon monoxide} / use of carbon is cheaper / use of electricity is expensive / ORA (1) 	can be reacted with {carbon / carbon monoxide} and oxygen removed	(2)

Question Number	Answer	Acceptable answers	Mark
2 (d)	An explanation linking the following points • (magnesium and aluminium) {atoms / ions / particles} are different sizes (1)	magnesium atoms are larger than aluminium atoms OR aluminium atoms are larger than magnesium atoms	
	 this prevents the layers (of atoms / ions / particles) sliding over each other (1) 	sheets / rows penalise molecules only once	(2)

Question Number	Answer	Acceptable answers	Mark
2 (e)	$4 (AI) + 3 (O_2) \rightarrow (2AI_2O_3)$		
	4 (1)		4-5
	3 (1)		(2)

Question number	Answer	Mark
3(a)(i)	С	(1)

Question number	Answer	Mark
3(a)(ii)	С	(1)

Question number	Answer	Mark
3(b)	Any two of the following points. For the acid, use the same:	
	• volume (1)	
	concentration (1)	
	temperature (1)	(2)

Question number	Answer	Mark
3(c)(i)	electrolysis (1)	(1)

Question number	Answer	Mark
	An angular that combined identification (unaculaded (1 magnic)	
3(c)(ii)	 An answer that combines identification- knowledge (1 mark) and understanding (1 mark) and reasoning/justification-understanding (1 mark) aluminium compounds are more stable than iron compounds (1) so carbon is not a strong enough reducing agent to produce 	
	aluminium from its ore (1)	(2)

Question number	Answer	Mark
3(d)	$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ • Correct formulae (1)	
	Balancing of correct formulae (1)	(2)

Question Number	Answer	Acceptable answers	Mark
4(a)	loss of oxygen	gain of electrons	(1)

Question Number	Answer	Acceptable answers	Mark
4(b)	 An explanation to include aluminium high in reactivity series / aluminium more reactive than {carbon / iron} (1) 	aluminium compounds are stable aluminium is more reactive ignore just 'very reactive'/highly reactive	(2)
	(aluminium reduction) needs more energy / electrolysis is {more / very} powerful (means of reduction) / carbon cannot displace aluminium (from aluminium oxide) (1)	allow stronger (method of reduction)	

Question Number	Answer	Acceptable answers	Mark
4(c)	$2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$ (3) Ihs (1) rhs (1) balancing correct formulae (1)		(3)

Questio Number		Indicative Content	Mark
QWC	*4(d)	Property change (other than increased strength) or use of alloy increased hardness decreased malleability increased corrosion resistance shape-memory gold alloy for jewellery stainless steel used for cutlery steel used for construction nitinol (shape-memory alloy) used for spectacle frames / stents idea of any use of metal after alloying	(6)
		 Structural change pure metal – atoms are all the same size / suitable diagram of pure metal structure atoms arranged in a regular way / lattice alloy – atoms are of different sizes / suitable diagram of alloy structure disrupts arrangement of atoms atoms in pure metal structure can slide over each (when bent) alloy – sliding prevented by different sized atoms 	

Level	0	No rewardable content
1	1 - 2	 a limited description of how one property changes, one use or one statement related to structure eg iron rusts, stainless steel does not; atoms in a pure metal all the same size the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy
2	3 – 4	 a simple description of how two properties change or two uses or a simple description of why alloys become stronger or a property/use and a statement about structure eg the atoms in a pure metal have a regular arrangement but in alloys there are different sized atoms the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy
3	5 - 6	 a detailed description of why alloys become stronger including at least one change in property of an alloy or use eg the atoms in a pure metal have a regular arrangement but in alloys the different sized atoms stops the atoms sliding over each other and how alloys are more useful such as gold alloys used in jewellery the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors

Question Number	Answer	Acceptable answers	Mark
5(a)	B tin oxide is reduced		(1)

Question Number	Answer	Acceptable answers	Mark
5 (b)(i)	An explanation linking two of the following		
	alloys have different sized atoms	suitable labelled diagrams	
	 {atoms/layers/sheets/particles} {slide/slip/move} over each other (easily) in pure metal 	reject molecules once	
	 {structure/layers} disrupted (in alloy) 		
	 stop {atoms/layers/sheets/particles} {sliding/slipping/moving} over one another (easily) in 		(2)

Question	Answer	Acceptable answers	Mark
Number			
5(b)(ii)	all points plotted correctly (1) best fit line across 4 plotted points (1)	+/- 1 small square	(2)

Question Number	Answer	Acceptable answers	Mark
5 (b) (iii)	Correct value from their graph +/- one small square (%)		(1)

Question Number		Indicative Content	Mark
QWC	*5(c)	An explanation including some of the following points	
		 gold gold is an unreactive metal/at the bottom of the reactivity series it does not combine with other elements in the Earth's crust so is found as uncombined metal cost of recovery is low 	
		 iron iron is a more reactive metal than gold and less reactive than aluminium/middle of reactivity series found combined with other elements it is extracted by heating with carbon electrolysis can be used but electrolysis is more expensive (than heating with carbon) 	
		 aluminium aluminium is a very reactive metal/near to top of the reactivity series found combined with other elements it is extracted by electrolysis because it is very difficult to reduce electrolysis is a powerful method of reduction use of electricity makes this method expensive 	(6)
Level		No rewardable content	
1	1 - 2	 a limited description e.g. a simple justification in terms of reactivity or cost for how one of the metals is extracted OR an indication of how two of the metals are extracted the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy 	
2	3 - 4	 a simple description e.g. a simple indication of how all three metals are extracted OR an indication of how two of the metals are extracted with a justification in terms of reactivity or cost for one the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy 	
3	5 - 6	 a detailed description e.g. indicates how all three metals are extracted with a justification for at least two in terms of reactivity and a reference to cost the answer communicates ideas clearly and coherently uses a 	
		range of scientific terminology accuratelyspelling, punctuation and grammar are used with few errors	